Abstract
An experimental arrangement that allows in vitro exposure of cells to focused ultrasound-mediated hyperthermia (43°C–55°C) in a tissue-mimicking phantom with biological, acoustic and thermal properties comparable to those of human soft tissue is described. Cells were embedded in a compressed collagen gel, which was sandwiched between 6-mm-thick slices of biocompatible, acoustically absorbing and thermally tissue mimicking poly(vinyl alcohol) cryo-gel. To illustrate the system's potential, cells were exposed using a 1.66-MHz focused ultrasound beam (spatial-peak temporal-average intensities (ISPTA) = 900–1400 W/cm2) that traced out a circular trajectory (5–8 mm in diameter). Real-time temperature monitoring allowed cells to be exposed reproducibly to a pre-determined thermal dose. An experimental planning tool that estimates the thermal dose distribution throughout the sample and allows spatial correlation with cell position has been developed. Treatment response was evaluated qualitatively using microscopy and cell viability testing. This experimental arrangement has significant potential for future, biologically relevant, in vitro focused ultrasound-mediated hyperthermia studies.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.