Abstract

The ability to monitor the responses of and inhibit the growth of brain tumors during gene therapy has been severely limited due to the blood-brain barrier (BBB). A previous study has demonstrated the feasibility of noninvasive in vivo imaging with 123I-2'-fluoro-2'-deoxy-5-iodo-1-β-D-arabinofuranosyluracil (123I-FIAU) for monitoring herpes simplex virus type 1 thymidine kinase (HSV1-tk) cancer gene expression in an experimental animal model. Here, we tested the enhancement of SPECT with 123I-FIAU and ganciclovir (GCV) treatment in brain tumors after BBB disruption induced by focused ultrasound (FUS) in the presence of microbubbles. We established an orthotopic F98 glioma-bearing rat model with trifusion reporter genes. The results of this study showed that the rat model of HSV1-tk-expressing glioma cells could be successfully detected by SPECT imaging after FUS-induced BBB disruption on day 10 after implantation. Compared to the control group, animals receiving the GCV with or without sonication exhibited a significant antitumor activity (P < 0.05) of glioma cells on day 16 after implantation. Moreover, combining sonication with GCV significantly inhibited tumor growth compared with GCV alone. This study demonstrated that FUS may be used to deliver a wide variety of theranostic agents to the brain for molecular imaging and gene therapy in brain diseases.

Highlights

  • The systemic administration of conventional radiotherapy and chemotherapy can lead to side effects on patients [1, 2]

  • The main aim of this study was to determine whether the molecular imaging of an established intracranial brain tumor derived from F98/Fluc/GFP/ HSV1-tk (FGT) glioma cells with 123I-FIAU could be enhanced by pulsed focused ultrasound (FUS) exposure

  • High levels of 123I-FIAU radioactivity accumulation in F98/FGT gliomas with FUS-induced blood-brain barrier (BBB) disruption revealed a high level of herpes simplex virus type 1 thymidine kinase (HSV1-tk) expression (Figure 1A)

Read more

Summary

Introduction

The systemic administration of conventional radiotherapy and chemotherapy can lead to side effects on patients [1, 2]. In contrast with traditional treatments, gene therapy has the potential to be more tumor-specific in terms of targeting and selectively destroying tumor cells by inserting genes conferring drug sensitivity into the tumor cells. Antitumor suicide gene therapy is a new therapeutic strategy for the treatment of patients with otherwise incurable malignant brain tumors. This approach involves the introduction into tumor cells of a gene capable of converting a nontoxic prodrug into a cytotoxic drug. Transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene into tumor cells makes these cells sensitive to antiviral drugs [3]. The HSV1-tk/GCV strategy leads to the death of the transfected tumor cells and of surrounding nontransfected tumor cells [4]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.