Abstract

Block copolymer (BCP) self-assembly has tremendous potential applications in next-generation nanolithography. It offers significant advantages, including high resolution and cost-effectiveness, effectively overcoming the limitations associated with conventional optical lithography. In this work, we demonstrate a focused solar annealing (FSA) technique that is facile, eco-friendly, and energy-efficient for fast self-assembly of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films. The FSA principle involves utilizing a common biconvex lens to converge incident solar radiation into a high-temperature spot, which is directly used to drive the microphase separation of PS-b-PMMA thin films. As a result, PS-b-PMMA undergoes self-assembly, forming ordered nanostructures in a vertical orientation at seconds timescales on silicon substrates with a neutral layer. In addition, the FSA technique can be employed for grafting neutral polymer brushes onto the silicon substrate. Furthermore, the FSA's compatibility with graphoepitaxy-directed self-assembly (DSA) of BCP is also demonstrated in the patterning of contact holes. The results of contact hole shrinking show that contact hole prepatterns of ∼60.4 nm could be uniformly shrunk to ∼20.5 nm DSA hole patterns with a hole open yield (HOY) of 100 %. For contact hole multiplication, doublet DSA holes were successfully generated on elliptical templates, revealing an average DSA hole size of ∼21.3 nm. Most importantly, due to the direct use of solar energy, the FSA technique provides many significant advantages such as simplicity, environmental friendliness, solvent-free, low cost, and net-zero carbon emissions, and will open up a new direction for BCP lithography that is sustainable, pollution-free, and carbon-neutral.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call