Abstract
Deformable models incorporating shape priors have proved to be a successful approach in segmenting anatomical regions and specific structures in medical images. This paper introduces weighted shape priors for deformable models in the context of 3D magnetic resonance (MR) image segmentation of the bony elements of the human hip joint. The fully automated approach allows the focusing of the shape model energy to a priori selected anatomical structures or regions of clinical interest by preferentially ordering the shape representation (or eigen-modes) within this type of model to the highly weighted areas. This focused shape model improves accuracy of the shape constraints in those regions compared to standard approaches. The proposed method achieved femoral head and acetabular bone segmentation mean absolute surface distance errors of 0.55±0.18mm and 0.75±0.20mm respectively in 35 3D unilateral MR datasets from 25 subjects acquired at 3T with different limited field of views for individual bony components of the hip joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.