Abstract

BACKGROUND: Although the therapeutic effects of pulsed electromagnetic field (PEMF) treatment are well documented, underlying mechanisms of PEMF in treating pathological conditions are incompletely understood. METHODS: We utilized a human gastrointestinal epithelial cell system to investigate the influence of a low-frequency electromagnetic field generated from a focused PEMF (f-PEMF) device on the expression of human genes. We simulated an inflammatory condition by stimulating the cells with lipopolysaccharide (LPS). A set of LPS-activated cells were then subjected to 100-Hz f-PEMF for 30 seconds to observe the therapeutic effect of f-PEMF. We determined the therapeutic effect by analyzing the reversal of LPS-induced alterations in gene expression using RNA-seq analysis. The results were compared to the changes between untreated controls versus LPS treated cells, defining the homeostatic alteration of changes in gene expression profile caused by LPS stimulation alone. We further compared LPS treated versus LPS + f-PEMF treated cells to examine the effect of f-PEMF in the reversal of the LPS-induced alterations in gene expression patterns. RESULTS: A total of 38,162 genes (of 60,448 tested) were constitutively expressed in the untreated control cells. Stimulation with LPS altered the expression profile through de novo-induction of >1950 genes that were originally unexpressed and silencing 2486 constitutively expressed genes. LPS treatment also altered expression levels in a large panel of genes. Exposing LPS-treated cells to 100 Hz of f-PEMF for 30 seconds (s) showed reversals of LPS treatment-induced altered gene expression. In this paper, we emphasize the f-PEMF regulation of genes associated with inflammatory processes. CONCLUSION: Our data indicates for possibility of developing new nonchemical alternative therapeutic approaches for treatment of inflammation and pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.