Abstract
Linear logic enjoys strong symmetries inherited from classical logic while providing a constructive framework comparable to intuitionistic logic. However, the computational interpretation of sequent calculus presentations of linear logic remains problematic, mostly because of the many rule permutations allowed in the sequent calculus. We address this problem by providing a simple interpretation of focused proofs, a complete subclass of linear sequent proofs known to have a much stronger structure than the standard sequent calculus for linear logic. Despite the classical setting, the interpretation relates proofs to a refined linear λ-calculus, and we investigate its properties and relation to other calculi, such as the usual λ-calculus, the λμ-calculus, and their variants based on sequent calculi.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.