Abstract

Abstract Kirigami, i.e. the cutting and folding of flat objects to create versatile shapes, is one of the most traditional Chinese arts that has been widely used in window decorations, gift cards, festivals, and various ceremonies, and has recently found intriguing applications in modern sciences and technologies. In this article, we review the newly developed focused-ion-beam-based nanoscale kirigami, named nano-kirigami, as a powerful three-dimensional (3D) nanofabrication technique. By utilizing the topography-guided stress equilibrium induced by ion-beam irradiation on a free-standing gold nanofilm, versatile 3D shape transformations such as upward buckling, downward bending, complex rotation, and twisting of nanostructures are precisely achieved. It is shown that the generated 3D nanostructures possess exceptional geometries and promising photonic functionalities, including strongly interacting multiple Fano resonances, giant optical chirality, clear photonic spin Hall effects, and diffractive phase/polarization effects. The studies of such structures can build up novel platforms for versatile manufacturing techniques and be helpful to establish new areas in plasmonics, nanophotonics, optomechanics, MEMS/NEMS, etc., with the generation of exotic but functional nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.