Abstract

AbstractGas chimneys, fluid-escape pipes, and diffused gas clouds are common geohazards above or below most petroleum reservoirs and in some CO2 storage sites. However, the processes driving the formation of such structures are poorly understood, as are the time scales associated with their growth or their role as long-term preferential fluid-migration pathways in sedimentary basins. We present results from a multidisciplinary study integrating advanced seismic processing techniques with high-resolution simulations of geological processes. Our analyses indicate that time-dependent rock (de)compaction yields ascending solitary porosity waves forming high-porosity and high-permeability vertical chimneys that will reach the surface. The size and location of chimneys depend on the reservoir topology and compaction length. Our simulation results suggest that chimneys in the studied area could have been formed and then lost their connection to the reservoir on a time scale of a few months.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call