Abstract
We study implicit discourse relation detection, which is one of the most challenging tasks in the field of discourse analysis. We specialize in ambiguous implicit discourse relation, which is an imperceptible linguistic phenomenon and therefore difficult to identify and eliminate. In this paper, we first create a novel task named implicit discourse relation disambiguation (IDRD). Second, we propose a focus-sensitive relation disambiguation model that affirms a truly-correct relation when it is triggered by focal sentence constituents. In addition, we specifically develop a topic-driven focus identification method and a relation search system (RSS) to support the relation disambiguation. Finally, we improve current relation detection systems by using the disambiguation model. Experiments on the penn discourse treebank (PDTB) show promising improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.