Abstract

The results of the linear range cell migration (RCM) correction and inherent range-dependent squint angle in the case of high-resolution highly squinted synthetic aperture radar (SAR) imaging produce two-dimensional (2-D) spatial-variant RCMs and azimuth-dependent Doppler parameters (i.e., highly varying Doppler centroid and frequency modulation rates), which make highly squinted SAR imaging difficult. However, the most existing algorithms failed to consider these problems. To obtain high-quality SAR image, in this study, both the 2-D spatial-variant RCMs and the azimuth-dependent Doppler parameters are studied. First, a reference range linear RCM correction (RCMC) is used to remove the most of the linear RCM components and to mitigate the range-azimuth coupling of the 2-D spectrum. And then, in the azimuth time dimension, a new perturbation function is designed in the extended nonlinear chirp scaling (CS) (ENLCS) algorithm to overcome the azimuth-dependent RCM and to equalize Doppler parameters. To remove both the inherent range-dependent RCM and the linear RCM caused by the range-dependent squint angle, a modified CS (MCS) algorithm with a new scaling function is proposed, and for the residual RCMs, a bulk RCMC and second range compression (SRC) are utilized to compensate them. With the proposed ENLCS and MCS operation, the 2-D spatial-variant RCMC and the azimuth-dependent Doppler equalization are, thus, achieved. The experimental results with simulated data in the case of the high-resolution highly squinted SAR demonstrate the superior performance of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call