Abstract

Volume exclusion and single-file diffusion play an important role at very small scales, such as those associated with molecular machines, ion channels, and transport in zeolites, while introducing fundamental differences compared to Brownian motion, such as changes to the power-law relation between the mean square displacement and time. In this work we map the chemical master equation for excluded diffusion onto a Schrödinger equation via annihilation and creation ladder operators with fermionic statistics, together with linear and symbolic algebra with the resulting Fock-space representation to describe the effect of volume-exclusion processes in finite one-dimensional chains. We contrast the dynamics with the nonexclusive (bosonic) diffusion for crowded, intermediate, and dilute particle populations. Motivated by shuttling in molecular machines, we proceed to investigate differences in exit time distributions introduced by volume exclusion, incorporating the presence of transport bias. More generally, this study demonstrates how one can analyze volume-excluded transport for small stochastic systems, without the need for stochastic simulation and ensemble averaging, simply by considering anticommutation relations and fermionic statistics in a Fock-space representation of the stochastic dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.