Abstract

In experiments on cats, we investigated focal potentials of Clarke's column neurons and discharges of individual neurons recorded extracellularly. An ultrasonic scalpel was used to remove the part of the spinal cord between Th13 and L3, and an electrode was inserted into the face of the caudal segment of the spinal cord along the axis of Clarke's column. Orthodromic excitation of Clarke's column neurons was evoked by stimulating cut nerves of the ipsilateral extremity; antidromic excitation was evoked by stimulating the dorsolateral funiculus, which was preliminarily separated from the removed portion of the spinal cord. It was found that the orthodromic potential, antidromic potential, and discharges are distinctly registered when the method of electrode insertion is used, whereas they were not recorded when the microelectrodes were sunk into the dorsal surface in these experiments. It is demonstrated that orthodromic and antidromic focal potentials of Clarke's column neurons are similar to motoneuron focal potentials with respect to time characteristics. Inversion of the charge sign was recorded with the approach of the microelectrode's tip to the soma of Clarke's column neurons. It is hypothesized that the success of recording focal potentials and extracellular discharges of Clarke's column neurons resulted from the fact that the orientation of dendrites of these cells matches the direction of microelectrode movement. The slender portion of the microelectrode penetrates the interdendritic space, where tension of the extracellular field is the greatest; it then moves through this space to reach the soma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.