Abstract

* Here, a new approach to macromolecular imaging of leaf tissue using a multichannel focal plane array (FPA) infrared detector was compared with the proven method of infrared mapping with a synchrotron source, using transverse sections of leaves from a species of Eucalyptus. * A new histological method was developed, ideally suited to infrared spectroscopic analysis of leaf tissue. Spatial resolution and the signal-to-noise ratio of the FPA imaging and synchrotron mapping methods were compared. * An area of tissue 350 microm(2) required approx. 8 h to map using the synchrotron technique and approx. 2 min to image using the FPA. The two methods produced similar infrared images, which differentiated all tissue types in the leaves according to their macromolecular chemistry. * The synchrotron and FPA methods produced similar results, with the synchrotron method having superior signal-to-noise ratio and potentially better spatial resolution, whereas the FPA method had the advantage in terms of data acquisition time, expense and ease of use. FPA imaging offers a convenient, laboratory-based approach to microscopic chemical imaging of leaves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.