Abstract
We describe and use a CO2 diffusion pipette to produce a quickly reversible focal acidosis in the retrotrapezoid nucleus region of the rat brain stem. No tissue injection is made. Instead, artificial cerebrospinal fluid (aCSF) equilibrated with CO2 circulates within the micropipette, providing a source for continued CO2 diffusion into the tissue from the pipette tip. Tissue pH electrodes show the acidosis is limited to 500 micron from the tip. In controls (aCSF equilibrated with air), 1-min pipette perfusions increased tissue pH slightly and decreased phrenic nerve amplitude. In moderate- and high-CO2 groups (aCSF equilibrated with 50 or 100% CO2), 1-min perfusions significantly decreased tissue pH and increased phrenic nerve amplitude in a dose-dependent manner. The responses developed and reversed within minutes. Compared with our prior use of medullary acetazolamide injections to produce a focal acidosis, in this approach the acidosis 1) arises and reverses quickly and 2) its intensity can be varied. This allows study of sensitivity and mechanism. We conclude from this initial experiment that retrotrapezoid nucleus region chemoreceptors operate within the normal physiological range of CO2-induced tissue pH changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.