Abstract
The blood-brain-barrier (BBB), a network of tight junctions that impedes large molecule transport, limits the usefulness of systemic chemotherapeutic delivery for the treatment of malignant gliomas and other neurological diseases. Here, we present a tool for BBB disruption that uses bursts of sub-microsecond bipolar pulses to enhance the transfer of large molecules to the brain. Blunt needle electrodes were advanced into the motor cortex of anesthetized adult rats, and a series of 90–900 bursts were delivered with voltage-to-distance ratios of 250 or 2000 V/cm, a total programmed energized time of 100 μs, and a repetition rate of 1 Hz. BBB disruption was assessed via a gadolinium-Evans blue albumin tracer, and all experimental conditions were found to cause BBB disruption immediately following treatment without inducing local or distal muscle contractions. The lowest energy condition, 300 bursts consisting of 850 ns bipolar pulses, resulted in significant BBB disruption (0.51 cm3), without displaying necrotic or apoptotic damage to neurological tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.