Abstract

Foamy phase-change materials (FPCMs) based on linear low-density polyethylene (LLDPE) blended with 30 wt.% of paraffin wax (W) were successfully prepared for the first time. The advantage of these materials is their double functionality. First, they serve as standard thermal insulators, and second, the paraffin wax acts as a phase change component that absorbs thermal energy (the latent heat) during melting if the temperature increases above its melting point, which ensures better heat protection of buildings, for instance, against overheating. The density of the porous fabricated FPCM was 0.2898 g/cm3 with pore content 69 vol.% and gel portion achieved 27.5 wt.%. The thermal conductivity of the LLDPE/W foam was 0.09 W/m.K, whereas the thermal conductivity of the neat LLDPE foam prepared under the same conditions was 0.06 W/m.K, which caused a higher porosity of approximately 92 vol.%. The FPCM absorbed or released approximately 22–23 J/g during melting or cooling, respectively, and the material was stable under thermal and mechanical cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.