Abstract
Foam concrete boasts widespread applications in backfill engineering, energy-efficient insulation components, and road infrastructure. However, the foam concrete with lower density tends to possess the lower stability. The unstable characteristics of foam concrete restricts its application. In this study, the feasibility of employing biochars to increase stability of foamed concrete is investigated. The rheological properties of base mix are carried out to analyze the foam concrete stability. The analysis of water state, interparticle distance and ion concentration are tested to analyze the stabilization mechanisms. Our findings demonstrate that the introduction of corn husk biochar (CHBC) within the base mix expedites flocculation formation, reducing interparticle distance and subsequently elevating the yield stress. Conversely, the inclusion of rice husk biochar (RHBC) diminishes ion concentration, heightening repulsion forces between particles and thereby reducing yield stress of base mix. Higher yield stress exert the higher constraining force and frictional force to the bubbles, thereby decreasing bubble size in fresh foamed concrete, bettering pore structure, compressive strength and foam stability of foamed concrete. Additionally, the increase in CHBC content enhances pore sphericity, potentially attributed to decreased bubble deformation parameters Caη.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.