Abstract

This paper investigates foam granulation in a twin screw extruder as a new continuous wet granulation technique for pharmaceutical powder drug formulations. Foamed aqueous binder has a reportedly lower soak-to-spread ratio than drop or spray liquid addition in batch granulation. This work demonstrates a twin screw extruder configuration for foam granulation and subsequently compares the new approach against liquid injection in the granulation of α-lactose monohydrate with a methylcellulose binder. Trials were conducted at high powder output rates (20–40 kg/h) and high screw speeds (220–320 RPM) with two screw configurations. Process stability improved with the new technique allowing granulation with less binder. The extruded mass maintained a low exit temperature, being insensitive to operating conditions unlike the liquid injection approach, where temperatures rose significantly as flow rate increased. The particle size distribution by foam granulation reflected a more uniformly wetted mass with larger granule growth noted even for conditions where dry powder exited by liquid injection. Other factors were found similar between the two binder delivery methods such as consumed mechanical energy, as well as fracture strength and compressibility of produced granules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.