Abstract

Lack of microbial contamination is of great significance to drinking water safety and water reclamation. In this work, foam fractionation was employed to remove Pseudomonas aeruginosa (P. aeruginosa) from aqueous solution and dodecyl dimethyl betaine (BS12) was used as the collector. Since the attachment of strain cells on the bubble surface would impede the reflux of interstitial liquid in the plateau borders (PBs), a novel strategy in strengthening foam drainage was developed through artificially inducing foam evolution. Two gas distributors with different pore diameters had been mounted at the bottom of the column for regulating the radial distribution of bubble size in the foam phase. Experimental results indicated that gas diffuse and bubble coarsening could be significantly promoted by increasing the size difference among the adjacent bubbles. Bubble coalescence contributed to broadening the width of plateau borders, thereby avoiding the borders blockage by strain cells. During bubble coalescence, surfactant molecules would be partially shifted from the surface of small bubble towards that of large bubble due to the molecule density difference. The increase in surface excess of surfactant molecules on gas-liquid interface was conducive to improving foam stability. Under the suitable conditions of air flow rates of gas distributor with 0.125 mm of pore diameter 75 mL/min and gas distributor with 0.425 mm of pore diameter 125 mL/min, BS12 concentration 0.1 g/L, and P. aeruginosa concentration 2.0 × 104 CFU/mL, the removal percentage and enrichment ratio of P. aeruginosa were 99.6% and 10.6, respectively. This work is expected to provide some new light for strengthening foam drainage in the presence of solid particles and to facilitate the industrialization of foam fractionation in water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.