Abstract
A model for drainage/imbibition of a foam placed on the top of a porous substrate is presented. The equation of liquid imbibition into the porous substrate is coupled with a foam drainage equation at the foam/porous substrate interface. The deduced dimensionless equations are solved using a finite element method. It was found that the kinetics of foam drainage/imbibition depends on three dimensionless numbers and the initial liquid volume fraction. The result shows that there are three different regimes of the process. Each regime starts after initial rapid decrease of a liquid volume fraction at the foam/porous substrate interface: (i) rapid imbibition: the liquid volume fraction inside the foam at the foam/porous substrate interface remains constant close to a final liquid volume fraction; (ii) intermediate imbibition: the liquid volume fraction at the interface with the porous substrate experiences a peak point and imbibition into the porous substrate is slower as compared with the drainage; (iii) slow imbibition: the liquid volume fraction at the foam/porous substrate interface increases to a maximum limiting value and a free liquid layer is formed between the foam and the porous substrate. However, the free liquid layer disappears after some time. The transition points between these three different drainage/imbibition regimes were delineated by introducing two dimensionless numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.