Abstract

The repair of large bone defects is a major clinical problem for which tissue engineering (association of a biomaterial and cells) constitutes a valuable alternative. In this domain, the architecture and the mechanical properties of the 3D scaffold aimed to support cells is of key importance to succeed in bone reconstruction. In this study, we aim to design and evaluate a bionanocomposite foam-based scaffold, exhibiting all the desired biofunctional attributes of biocompatibility, bioactivity, osteoconduction/induction, combined with potential release properties. To perform this, 2 components have been associated: (i) a biopolymer, pectin, incorporating (ii) calcium phosphate nanoparticules to provide bone apatite nucleation sites, mechanical reinforcement, and to play the role of potential drug reservoir. The goal of this study was to determine the feasibility of obtention of such bionanocomposite by foam-templating, and to study the influence of mineral particules ratio on pectin foam and final scaffold 3D architecture and properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.