Abstract

Zebra finch males learn their song by imitation, a process influenced by social variables. The neural pathways for acquisition and production of learned song are known, but the cellular and molecular underpinnings are not. Here we describe a novel gene named "FnTm2" ("Phantom 2") that is predicted to encode a small protein (220 aa) with a single fibronectin type III domain and a single transmembrane domain. This gene shows great variability in its expression in song system neurons of the anterior forebrain pathway (AFP), a circuit that influences song discrimination and is necessary for normal song acquisition. AFP nuclei that express FnTm2 include the nucleus HVC (its Area X-projecting neurons), Area X, and LMAN (core and shell). FnTm2 expression does not correlate with singing behavior like the immediate early gene ZENK. It is expressed variably during sleeping hours and is not dependent on an intact song circuit. FnTm2's expression is sensitive to hearing, because in deafened birds its expression is substantially reduced in the core of LMAN. Furthermore, a comparison of FnTm2 expression between mice and zebra finches revealed a conserved pattern of expression in the "limbic system." We suggest that FnTm2 may be sensitive to affective and/or attentional states and thus may provide insights on how social variables influence the production and discrimination of learned vocalizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.