Abstract
Rhizobium leguminosarum bv. viciae UPM791 contains a second copy of the fnrN gene, which encodes a redox-sensitive transcriptional activator functionally homologous to Escherichia coli Fnr. This second copy (fnrN2) is located in the symbiotic plasmid, while fnrN1 is in the chromosome. Isolation and sequencing of the fnrN2 gene revealed that the deduced amino acid sequence of FnrN2 is 87.5% identical to the sequence of FnrN1, including a conserved cysteine-rich motif characteristic of Fnr-like proteins. Individual R. leguminosarum fnrN1 and fnrN2 mutants exhibited a Fix+ phenotype and near wild-type levels of nitrogenase and hydrogenase activities in pea (Pisum sativum L.) nodules. In contrast, an fnrN1 fnrN2 double mutant formed ineffective nodules lacking both nitrogenase and hydrogenase activities. Unlike the wild-type strain and single fnrN1 or fnrN2 mutants, the fnrN1 fnrN2 double mutant was unable to induce micro-oxic or bacteroid activation of the hypBFCDEX operon, which encodes proteins essential for hydrogenase synthesis. In the search for symbiotic genes that could be controlled by FnrN, a fixNOQP operon, putatively encoding a micro-oxically induced, bacteroid-specific cbb3-type terminal cytochrome oxidase, was isolated from strain UPM791 and partially sequenced. The fixNOQP operon was present in a single copy located in the symbiotic plasmid, and an anaerobox was identified in the fixN promoter region. Consistent with this, a fixNOQP'-lacZ fusion was shown to be highly induced in micro-oxic cells of the wild-type strain. A high level of micro-oxic induction was also observed in single fnrN1 and fnrN2 mutants, but no detectable induction was observed in the fnrN1 fnrN2 double mutant. The lack of expression of fixNOQP in the fnrN1 fnrN2 double mutant is likely to cause the observed Fix- phenotype. These data demonstrate that, contrary to the situation in other rhizobia, FnrN controls both hydrogenase and nitrogenase activities of R. leguminosarum bv. viciae UPM791 in the nodule and suggest that this strain lacks a functional fixK gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.