Abstract
PD-L1 (programmed death-ligand 1) targeted therapies may be useful for several cancers. The use of non-invasive diagnostic and prognostic molecular imaging platforms could improve clinical assessment of PD-L1 tumor status during these therapies. Contrast enhanced ultrasound molecular imaging (CE-USMI) techniques may offer versatile and cost-effective ways to detect and quantify the expression levels of cellular targets in vivo. However, conventional use of microbubbles as a blood pool contrast agent for CE-USMI is limited to accessing intravascular biomarkers rather than reflecting the tumor molecular status. Using a microfluidic based reconstruction process we therefore developed ultra-stable nanobubbles (NBs) as a contrast agent for molecular imaging of vascular and extravascular cell surface markers. We then functionalized these NBs by covalently linking to nanobody (FN3hPD-L1) targeting human (h)PD-L1 to measure the expression of human PD-L1 in the tumor microenvironment (TME) in vivo. We showed the specific binding of hPD-L1 targeted NBs in cell culture, and in xenografted mouse models of hPD-L1 expressing CT26 tumors. CE-USMI of hPD-L1 in the TME in vivo showed ~3-fold increase in contrast signal compared to non-targeted NBs. Overall, in vivo use of CE-USMI with hPD-L1 targeted NBs has the potential for clinical translation and imaging of human cancers during immunotherapy, and for prognostic evaluation of patient response to PD-L1 targeted immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.