Abstract

Background: Current clinical treatments for gastric cancer (GC), particularly advanced GC, lack infallible therapeutic targets. The 3'-untranslated region (3'-UTR) has attracted increasing attention as a drug target. Methods: In vitro and in vivo experiments were conducted to determine the function of FN1 3'-UTR and FN1 protein in invasion and metastasis. RNA pull-down assay and high-throughput sequencing were used to screen the factors regulated by FN1 3'-UTR and construct the regulatory network. Western blotting and polymerase chain reaction were used to examine the correlation of intermolecular expression levels. RNA-binding protein immunoprecipitation was used to verify the correlation between FN1 3'-UTR and target mRNAs. Results: The FN1 3'-UTR may have stronger prognostic implications than the FN1 protein in GC patients. Upregulation of FN1 3'-UTR significantly promoted the invasive and metastatic abilities of GC cells to a greater extent than FN1 protein in vitro and in vivo. A novel regulatory network was constructed based on the FN1 3'-UTR-let-7i-5p-THBS1 axis, wherein FN1 3'-UTR displayed stronger oncogenic effects than the FN1 protein. Conclusions: FN1 3'-UTR may be a better therapeutic target for constructing targeted drugs in GC than the FN1 protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call