Abstract
The combination of optogenetics and functional magnetic resonance imaging (fMRI) is referred to as opto-fMRI. Optogenetics utilises genetic engineering to introduce light sensitive actuator proteins into cells. Functional MRI (fMRI) is a specialist form of magnetic resonance imaging concerned with imaging changes in blood flow and oxygenation, linked to regional variation in metabolic activity, in the brain. This study describes a methodological concern regarding the effects of light delivery into the brain for the purposes of opto-fMRI. We show that blue light delivery to the naïve rat brain causes profound fMRI responses, despite the absence of optogenetic activation. We demonstrate that these fMRI responses are dependent upon laser power and show that the laser causes significant heating. We identify how heating impacts upon the MR signal causing NMR frequency shifts, and T1 and T2* changes. This study brings attention to a possible confounder which must be taken into account when opto-fMRI experiments are designed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.