Abstract

The eyes of certain marine gastropods including Aplysia and Bulla, contain circadian pacemakers, which produce a circadian rhythm of autogenous compound action potential (CAP) activity. The CAPs are generated by the synchronous spike discharge of a distinctive population of retinal pacemaker neurons whose axons convey the CAP activity to the CNS. When CAP activity is recorded from a preparation with eyes attached to the CNS, the CAP activity is modulated by efferent activity. In this study we have identified FMRF-amide-like immunoreactive efferent axons in the optic nerves of Bulla. These axons arborize in the basal retinal neuropil adjacent to the pacemaker neurons and are in a position to make synaptic contacts with their dendrites. Similar immunoreactive fibers are not observed in Aplysia eyes. Exogenous FMRF-amide at micromolar concentrations suppresses ongoing CAP activity in isolated eyes but does not suppress the ERG or phase shift the circadian rhythm of CAP activity. Intracellular recordings from the retinal pacemaker neurons reveal that FMRF-amide hyperpolarizes the membrane potential, suppresses spike discharge, and decreases the input resistance, suggesting that a K conductance is increased. Electrical stimulation of the region of the cerebral ganglion that contains FMRF-amide immunoreactive neurons suppresses ongoing CAP activity. All these results are consistent with the idea that the FMRF-amide immunoreactive central neurons and their axons provide a pathway for efferent modulation of the CAP rhythm generated by the retinal pacemaker neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.