Abstract

The Fragile X mental retardation (FMR1) gene contains a polymorphic CGG trinucleotide repeat in the 5′-untranslated region. The repeat length in the normal population is between 5 and 54 repeats. A repeat length between 55 and 200 is defined as the pre-mutation repeat size. Elderly carriers of the pre-mutation can develop the progressive neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS the FMR1 mRNA levels are increased and it is hypothesized that FXTAS is caused by a RNA gain of function mechanism. Repeat lengths beyond 200 CGGs are defined as the full-mutation and causes Fragile X-syndrome which is the most common inherited form of mental retardation. The full-mutation results in the absence of the FMR1 mRNA and protein, FMRP, through abnormal CpG methylation and FMR1 gene silencing. In this report we have used the Flp-In T-REx system to generate locus directed stable cell lines harboring the FMR1 5′-UTR with varying CGG repeat lengths in front of a reporter gene. By this system the influence of various CGG repeat lengths for reporter gene expression can be comparatively examined in cell lines where the only genetic difference is CGG repeat lengths. In such cell lines we find that a full-mutation CGG repeat confers inhibition of reporter gene expression, whereas a pre-mutation CGG repeat did not increase reporter gene expression. In transient transfection assays using the same expression vectors the pre-mutation and full-mutation CGG repeats increased reporter gene expression. This study shows that locus directed integration of model FMR1 CGG transgenes could be a new basic tool to further elucidating the basic molecular mechanisms behind transcriptional deregulation of the FMR1 gene in fragile X-syndrome and FXTAS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.