Abstract

Bilayers, TbFeCo/GdFeCoSi, made by sputtering on glass substrate with buffer and capping layers were studied by measuring the hysteresis loop and by ferromagnetic resonance (FMR). When the field H was applied along the film normal, a double H C hysteresis loop related to the two sublayers was observed. In ferromagnetic resonance measurements, a peculiar out-of-plane angular dependence of FMR spectrum was obtained. When scanning field H was 0–637 kA/m less than the anisotropy field of TbFeCo sublayer, two FMR peaks were observed. One peak was characteristic of uniaxial and unidirectional anisotropy. The anisotropy constants were obtained by fitting the data with the theory of FMR, and this peak was considered to be related to the low anisotropy GdFeCoSi layer. The second peak appeared only when the dc field H was orientated in a limited angular range around 180°. This peak was considered to be related to an uncoupled interfacial GdFeCoSi sublayer near Al capping layer. However, when H was scanned between 0–1114 kA/m, only one peak is observed due to magnetization reversal of TbFeCo layer with uniaxial anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.