Abstract

Green binary solvent mixtures with a polarity and viscosity close to that of DMF perform similarly in solid-phase peptide synthesis (SPPS). However, while coupling reactions readily proceed in solvents of significantly lower polarity than that of DMF, a high solvent polarity is essential for Fmoc-removal using piperidine, which limits the options for green SPPS solvents. Herein, we report our efforts to expand the available solvent polarity space for green SPPS. We identified pyrrolidine as an efficient base to enable Fmoc-removal in less polar solvent mixtures that also favor coupling reactions, such as dimethyl sulfoxide/ethyl acetate (1:9) and N-butylpyrrolidone/1,3-dioxolane (2:8 and 4:6). Employing less polar binary solvent mixtures in combination with pyrrolidine gave crude peptide purities comparable to or better than for DMF with piperidine in the SPPS of challenging peptide targets. An evaluation of base-dependent side reactions such as diketopiperazine (DKP) and aspartimide formation showed increased side-product formation when using pyrrolidine on DKP- and aspartimide-prone sequences. However, the scaled-up syntheses (5 and 7.5 mmol, respectively) of the peptide therapeutics dasiglucagon (29-mer) and bivalirudin (20-mer) gave good crude peptide purities and purity profiles amenable to SPPS optimization. Pyrrolidine therefore represents a useful alternative to piperidine for Fmoc-removal in an expanded solvent space for green SPPS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.