Abstract
With the development of deep learning, medical image segmentation technology has made significant progress in the field of computer vision. The Unet is a pioneering work, and many researchers have conducted further research based on this architecture. However, we found that most of these architectures are improvements in the backward propagation and integration of the network, and few changes are made to the forward propagation and information integration of the network. Therefore, we propose a feedback mechanism Unet (FM-Unet) model, which adds feedback paths to the encoder and decoder paths of the network, respectively, to help the network fuse the information of the next step in the current encoder and decoder. The problem of encoder information loss and decoder information shortage can be well solved. The proposed model has more moderate network parameters, and the simultaneous multi-node information fusion can alleviate the gradient disappearance. We have conducted experiments on two public datasets, and the results show that FM-Unet achieves satisfactory results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.