Abstract
Background and ObjectiveThe fundamental matrix estimation is a classic problem in computer vision. The traditional algorithms require high-precision correspondences. However, correspondences in biplanar radiographs are difficult to match accurately. MethodsWe propose an end-to-end network to estimate the F-Matrix directly from BR, which includes feature extraction and regression prediction. There is no publicly available dataset of biplanar radiographs. We produce the dataset in this paper to train and test the proposed network. Four metrics, Mean Square Error, Calculating R-squared, Square Value of Extreme Constraint, and Absolute Value of Extreme Constraint are used to measure the performance of the approaches. ResultsThe best Square Value of Extreme Constraint and Absolute Value of Extreme Constraint values we obtained on the datasets were 0.20 and 0.43, respectively. Compared with other methods, the estimation accuracy of FM-Net is improved by more than 53.53%. ConclusionsThe results of experiments demonstrate that the proposed network can estimate the fundamental matrix successfully. It outperforms the classical algorithms and other deep learning-based methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.