Abstract

High-temperature-superconducting (HTS) bearings have the potential to reduce rotor idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration, Toward this goal, we have developed and tested a flywheel system with 5- to 15-kg disk-shaped rotors. Rim speeds exceeded 400 m/s, and stored energies were >80 Wh. Test implementation required technological advances in nearly all aspects of the flywheel system, Features and limitations of the design and tests are discussed, especially those related to achieving greater energy storage levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.