Abstract

A large portion of the recent performance increase in the High Performance Computing (HPC) and Machine Learning (ML) domains is fueled by accelerator cards. Many popular ML frameworks support accelerators by organizing computations as a computational graph over a set of highly optimized, batched general-purpose kernels. While this approach simplifies the kernels’ implementation for each individual accelerator, the increasing heterogeneity among accelerator architectures for HPC complicates the creation of portable and extensible libraries of such kernels. Therefore, using a generalization of the CUDA community’s warp register cache programming idiom, we propose a new programming idiom (CoRe) and a virtual architecture model (PIRCH), abstracting over SIMD and SIMT paradigms. We define and automate the mapping process from a single source to PIRCH’s intermediate representation and develop backends that issue code for three different architectures: Intel AVX512, NVIDIA GPUs, and NEC SX-Aurora. Code generated by our source-to-source compiler for batched kernels, borG, competes favorably with vendor-tuned libraries and is up to 2× faster than hand-tuned kernels across architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.