Abstract

Limits to flight performance at high altitude potentially reflect variable constraints deriving from the simultaneous challenges of hypobaric, hypodense and cold air. Differences in flight-related morphology and maximum lifting capacity have been well characterized for different hummingbird species across elevational gradients, but relevant within-species variation has not yet been identified in any bird species. Here we evaluate load-lifting capacity for Eurasian tree sparrow (Passer montanus) populations at three different elevations in China, and correlate maximum lifted loads with relevant anatomical features including wing shape, wing size, and heart and lung masses. Sparrows were heavier and possessed more rounded and longer wings at higher elevations; relative heart and lung masses were also greater with altitude, although relative flight muscle mass remained constant. By contrast, maximum lifting capacity relative to body weight declined over the same elevational range, while the effective wing loading in flight (i.e. the ratio of body weight and maximum lifted weight to total wing area) remained constant, suggesting aerodynamic constraints on performance in parallel with enhanced heart and lung masses to offset hypoxic challenge. Mechanical limits to take-off performance may thus be exacerbated at higher elevations, which may in turn result in behavioral differences in escape responses among populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.