Abstract

Two new air bearing slider designs are presented for storage densities greater than 100 Gb/in2 in hard disk drive (HDD) applications. Their dynamic frequencies and mode shapes are characterized, and they are used to study the flying height modulation (FHM) over wavy disks due to geometric effects as opposed to dynamic effects. It is found that low pitch designs experience large FHM at wavelengths on the order of the length of the sliders to one-eighth the length of the sliders due to a complex phase shift in the sliders trailing edge response as compared to the disk waviness. FHM due to disk waviness wavelengths from 2 mm to 0.16 mm was found to be a function of the sliders’ attitude (pitch angle) and the air bearing surface (ABS) geometry (pressure distribution over the ABS). The results presented suggest that the pitch should be greater than 100 μrad for the ABS designs presented and attention needs to be focused on the ABS design and disk morphology to avoid unacceptable FHM. An ABS design was introduced to reiterate the findings on geometric FHM showing an 83 percent decrease in geometric FHM. The FHM due to geometric effects of the slider designs studied in this paper could possibly be predicted by the disk morphology alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.