Abstract

Hendra virus causes sporadic but typically fatal infection in horses and humans in eastern Australia. Fruit-bats of the genus Pteropus (commonly known as flying-foxes) are the natural host of the virus, and the putative source of infection in horses; infected horses are the source of human infection. Effective treatment is lacking in both horses and humans, and notwithstanding the recent availability of a vaccine for horses, exposure risk mitigation remains an important infection control strategy. This study sought to inform risk mitigation by identifying spatial and environmental risk factors for equine infection using multiple analytical approaches to investigate the relationship between plausible variables and reported Hendra virus infection in horses. Spatial autocorrelation (Global Moran’s I) showed significant clustering of equine cases at a distance of 40 km, a distance consistent with the foraging ‘footprint’ of a flying-fox roost, suggesting the latter as a biologically plausible basis for the clustering. Getis-Ord Gi* analysis identified multiple equine infection hot spots along the eastern Australia coast from far north Queensland to central New South Wales, with the largest extending for nearly 300 km from southern Queensland to northern New South Wales. Geographically weighted regression (GWR) showed the density of P. alecto and P. conspicillatus to have the strongest positive correlation with equine case locations, suggesting these species are more likely a source of infection of Hendra virus for horses than P. poliocephalus or P. scapulatus. The density of horses, climate variables and vegetation variables were not found to be a significant risk factors, but the residuals from the GWR suggest that additional unidentified risk factors exist at the property level. Further investigations and comparisons between case and control properties are needed to identify these local risk factors.

Highlights

  • Hendra virus was first described in September 1994 in Australia, when it caused an outbreak of typically fatal disease in horses and two close-contact humans [1,2,3,4]

  • We model the spatial occurrence of reported Hendra virus infections in horses, and seek to identify key spatial and environmental risk factors

  • While it is probable that under-reporting of cases occurred historically, it is less likely post-2008, with increased industry and public awareness following the fatal infection of a veterinarian

Read more

Summary

Introduction

Hendra virus (genus Henipavirus, family Paramyxoviridae) was first described in September 1994 in Australia, when it caused an outbreak of typically fatal disease in horses and two close-contact humans [1,2,3,4]. Fundamental spatial risk factors comprise the geographic distribution of the pathogen, the natural host and potential spill-over hosts, overlaid by an environmental complexity of ecological and climatic variables that affect the behaviour of the above. The ability of climatic variables to influence host-pathogen interactions and spatial patterns of disease was highlighted in Australia recently with the identification of the role of relative humidity, maximum air temperature and wind speed in the spread of introduced equine influenza virus [19]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call