Abstract
Mass spectrometry-based proteomics is a popular and powerful method for precise and highly multiplexed protein identification. The most common method of analyzing untargeted proteomics data is called database searching, where the database is simply a collection of protein sequences from the target organism, derived from genome sequencing. Experimental peptide tandem mass spectra are compared to simplified models of theoretical spectra calculated from the translated genomic sequences. However, in several interesting application areas, such as forensics, archaeology, venomics, and others, a genome sequence may not be available, or the correct genome sequence to use is not known. In these cases, de novo peptide identification can play an important role. De novo methods infer peptide sequence directly from the tandem mass spectrum without reference to a sequence database, usually using graph-based or machine learning algorithms. In this review, we provide a basic overview of de novo peptide identification methods and applications, briefly covering de novo algorithms and tools, and focusing in more depth on recent applications from venomics, metaproteomics, forensics, and characterization of antibody drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.