Abstract
A fluxless process of bonding silicon to Ag-cladded copper using electroplated In-Ag multilayer structure is developed. The Ag cladding on the copper substrate is a stress buffer to deal with the large mismatch in coefficient of thermal expansion (CTE) between semiconductors such as Si (3 ppm/degC) and Cu (17 ppm/degC). To manufacture Ag on copper substrate, two techniques are developed. The first is an electroplating process to fabricate a thick Ag layer. The second technique is a novel laminating process that bonds Ag foil directly on Cu substrate. On Si chips, two underbump metallurgy (UBM) structures are designed, Si/Cr/Au and Si/Cr/Ni/Au. To produce a solder layer, Si chips are electroplated with In followed by thin Ag. The thin Ag cap layer prevents oxidation of the inner In region. To achieve a fluxless feature, the bonding process is performed in a vacuum environment (50 mtorrs) to suppress indium oxidation. Compared to bonding in air, the oxygen content is reduced by a factor of 15 200. Using Cr/Au UBM structure, the silicon chip was detached from Cu substrate. The broken interface lies between Si/Cr and Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> In IMC on Cu substrate. Using a new UBM design of Si/Cr/Ni/Au, high-quality joints are produced that comprise of three distinct layers of In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</sub> Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> , Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> In , and Ag. Microstructure and composition of the joints are studied using a scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components and Packaging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.