Abstract

Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al2O3-SiO2/boron phenol formaldehyde resin (MAS/BPF) composites to lower the formation temperature of eutectic liquid phase and promote the ceramification of ceramifiable composites. The effects of fluxing agents on the thermogravimetric properties, phase evolution, and microstructure evolution of MAS / BPF composites were characterized by TG-DSC, XRD and SEM analyses. The results reveal that the addition of a fluxing agent highly reduces the decomposition rate of MAS / BPF composites. Fluxing agents lower the formation temperatures of liquid phases of ceramifiable MAS / BPF composites obviously, and then promote the ceramification and densification process. The final residues of composites are ceramic surrounded by large amount of glass phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call