Abstract

A method is available that enables consistent study of the stochastic behavior of a system that obeys purely diffusive evolution equations. This method has been applied to a superconducting loop with nonuniform temperature, with average temperature close to Tc. It is found that a flux-dependent average potential difference arises along the loop, proportional to the temperature gradient and most pronounced in the direction perpendicular to this gradient. The largest voltages were obtained for fluxes close to 0.3Φ0, average temperatures slightly below the critical temperature, thermal coherence length of the order of the perimeter of the ring, BCS coherence length that is not negligible in comparison to the thermal coherence length, and short inelastic scattering time. This effect is entirely due to thermal fluctuations. It differs essentially from the usual Nernst effect in bulk superconductors, that is induced by magnetic field rather than by magnetic flux. We also study the effect of confinement in a 2D mesoscopic film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call