Abstract
AbstractThird‐order and fifth‐order upwind compact finite difference schemes based on flux‐difference splitting are proposed for solving the incompressible Navier–Stokes equations in conjunction with the artificial compressibility (AC) method. Since the governing equations in the AC method are hyperbolic, flux‐difference splitting (FDS) originally developed for the compressible Euler equations can be used. In the present upwind compact schemes, the split derivatives for the convective terms at grid points are linked to the differences of split fluxes between neighboring grid points, and these differences are computed by using FDS. The viscous terms are approximated with a sixth‐order central compact scheme. Comparisons with 2D benchmark solutions demonstrate that the present compact schemes are simple, efficient, and high‐order accurate. Copyright © 2008 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.