Abstract

This paper describes a class of explicit, Eulerian finite-difference algorithms for solving the continuity equation which are built around a technique called “flux correction.” These flux-corrected transport algorithms are of indeterminate order but yield realistic, accurate results. In addition to the mass-conserving property of most conventional algorithms, the FCT algorithms strictly maintain the positivity of actual mass densities so steep gradients and inviscid shocks are handled particularly well. This first paper concentrates on a simple one-dimensional version of FCT utilizing SHASTA, a new transport algorithm for the continuity equation, which is described in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.