Abstract

The flux dynamics in a polycrystalline sample of Bi1.7Pb0.3Sr2Ca2Cu3Ox with a macroscopic cylindrical hole (CH) drilled was investigated by slow transport relaxation (V-t curves) and magnetovoltage measurements (V-H curves). It was monitored that there are several discontinuities in the time evolution of quenched state in V-t curves, which was attributed to the leaving of quantized flux lines trapped through CH together with surface superconducting effects. We observed that asymmetric V-H curves demonstrate unusual remarkable counter clockwise hysteresis effects upon cycling of field. This interesting result was correlated mainly to the flux trapping inside the CH that acts as a macroscopic attractive pinning center for flux lines. Further, the hysteresis effects in V-H curves for a fixed transport current provide a direct evidence that the number of flux lines, measured dissipation and relative decrease/increase in irreversibilities could be determined by sweeping rate of external magnetic field (dH/dt) which leads also to peculiar time effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.