Abstract
Thermal rectification is the phenomenon by which the flux of heat depends on the direction of the flow. It has attracted much interest in recent years due to the possibility of devising thermal diodes. In this paper, we consider the rectification phenomenon in the quantum XXZ chain subject to an inhomogeneous field. The chain is driven out of equilibrium by the contact at its boundaries with two different reservoirs, leading to a constant flow of magnetization from one bath to the other. The nonunitary dynamics of this system, which is modeled by a Lindblad master equation, is treated exactly for small sizes and numerically for larger ones. The functional dependence of the rectification coefficient on the model parameters (anisotropy, field amplitude, and out of equilibrium driving strength) is investigated in full detail. Close to the XX point and at small inhomogeneity and low driving, we have found an explicit expression for the rectification coefficient that is valid at all system sizes. In particular, it shows that the phenomenon of rectification persists even in the thermodynamic limit. Finally, we prove that in the case of the XX chain, there is no rectification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.