Abstract
Flux pinning properties on the ErBa2Ca3O7 films with the nanoscaled and columnar-shaped BaMO3 (BMO,M=Zr,Sn) precipitates, i.e., nanorods, were investigated systematically based on the microstructure, critical current density Jc and irreversibility field Bi properties in high magnetic fields. We found that the in-field Jc and Bi increase monotonically with increasing the nanorod density until 3.5 wt % BZO and 6 wt % BSO additions, respectively, although the critical temperature Tc is reduced. According to the flux pinning analysis assuming of the linear summation, the BSO doped samples have the higher performance of the flux pinning than the BZO doped samples quantitatively even after the reduction in the Tc and size of the nanorods. It is considered that those differences originate from the effective pinning length of the nanorods and/or the condensation energy due to the difference of the carrier density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.