Abstract

Using the high-resolution Faraday effect, the flux penetration into YBa2Cu3Ox thin films grown over one or two substrate step edges is directly observed at a temperature of T=5 K. The regions at the steps are easily penetrated by the flux already present at low applied external magnetic fields due to the locally enhanced stray fields. The step edges are found to separate the sample magnetically into independent parts. It is also shown that the local observation of flux penetration allows detection of the influence of defects in the thin-film samples on the domain structures in a direct way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.