Abstract

The transition metal Zn(II) is thought to regulate cell and tissue growth by enhancing mitosis (cell proliferation) and suppressing the counterbalancing process of apoptosis (gene-directed cell death). To investigate the role of Zn(II) further, we have used a UV-excitable Zn(II)-specific fluorophore, Zinquin. The ester group of Zinquin is hydrolyzed by living cells, ensuring its intracellular retention; this allows the visualization and measurement of free or loosely-bound (labile) intracellular Zn(II) by fluorescence video image analysis or fluorimetric spectroscopy. Here we show that in cells undergoing early events of apoptosis, induced spontaneously or by diverse agents, there is a substantial increase in their Zinquin-detectable Zn(II). This increase occurred in the absence of exogenous Zn(II) and before changes in membrane permeability, consistent with a release of Zn(II) from intracellular stores or metalloproteins rather than enhanced uptake from the medium. We propose that there is a major redistribution of Zn(II) during the induction of apoptosis, which may influence or precipitate some of the later biochemical and morphological changes. The phenomenon of Zn(II) mobilization, revealed by Zinquin, presents a new element in the process of apoptosis for investigation and may permit rapid and sensitive identification of apoptotic cells, particularly in those tissues where their frequency is low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.