Abstract
Removal of the drug Gemfibrozil (GEM), as a target molecule, from aqueous media by using a carrier mediated transport in supported liquid membrane (SLM) and Stagnant Sandwich LM (SSwLM) systems has been investigated. Optimal chemical conditions to use in the transport tests were determined by means of solubility and liquid–liquid extraction tests. The results showed that the best LM phase to realize stable LM systems was tributylphosphate (TBP) 30% (v/v) in n-decane. Transport tests by using the “traditional” SLM system showed an average flux J AV(0–CTT) of 0.421 mmol h −1 m −2 and a system stability of 1410 min. Three different microfiltration membranes, GH-Polypro, FP-Vericel and Supor 200, made of polypropylene, polyvinylidene fluoride and polyethersulphone polymers, respectively, were used to assemble the SSwLM. Contact angle and adsorption measurements evidenced hydrophilic/lypophilic character of the supports. The best results in terms of average flux (0.873 mmol h −1 m −2), permeability coefficient (21.88 L h −1 m −2) and stability (7170 min ≈120 h) were obtained by using the SSwLM made with the Supor 200 support. The overall results showed that the SSwLM made with this type of support achieves both high flux and high stability compared to the SLM. Thus SSwLMs seems very interesting to employ transport in LM for removing molecular species (e.g. drugs) from aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.