Abstract
We reconsider the study of persistent currents in a disordered one-dimensional ring threaded by a magnetic flux ϕ, using he one-band tight-binding model for a ring of N-sites with random site energies. The secular equation for the eigenenergies expressed in terms of transfer matrices in the site representation is solved exactly to second order in a perturbation theory for weak disorder and fluxes differing from half-integer multiples of the flux quantum ϕ0=hc/e. From the equilibrium currents associated with the one-electron eigenstates we derive closed analytic expressions for the disorder averaged persistent current for even and odd numbers, Ne, of electrons in the ground state. Explicit discussion for the half-filled band case confirms that the persistent current is periodic with a period ϕ0, as in the absence of disorder, and that its amplitude is generally suppressed by the effect of the disorder. In comparison to previous results, based on an approximate analysis of the secular equation, the current suppression by disorder is strongly enhanced by a new periodic factor proportional to 1/ sin 2(2πϕ/ϕ0), for ϕ≠( integer )ϕ0/2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.